VISTA-101: A phase 1/2 clinical trial of KVA12123, an engineered IgG1 targeting VISTA alone and in combination with pembrolizumab in advanced solid tumors

Background

VISTA (V-domain Ig suppressor of T cell activation) is a strong driver of immunosuppression in the tumor microenvironment (TME).

- A negative immune checkpoint that suppresses T cell function in a variety of solid tumors
- Highly expressed in cold tumors and correlates with poor outcomes in cancer patients
- Up-regulated after checkpoint inhibitor therapy and associated with treatment failure
- Blocking VISTA induces a polyfunctional immune response that addresses immunosuppression and drives anti-tumor responses

VKA12123 is a VISTA blocking immunotherapy in development as a twice weekly infusion

- An engineered IgG1 mAb that binds to a unique epitope at acidic and neutral pHs
- Induces a strong anti-tumor response as a single agent and in combination with anti-PDL1 in multiple preclinical tumor models
- Well tolerated and does not induce the release of CRS associated cytokines in non-human primates or in human whole blood
- May be an effective immunotherapy for many types of cancer including NSCLC, colorectal (CRC), renal cell carcinoma (RCC), head and neck (SCCHN), and ovarian (OC) cancers

VISTA-101 study objectives

- **Primary**: safety and tolerability, recommended Phase 2 dose (RP2D) or maximum tolerated dose (MTD) of VKA12123
- **Secondary**: pharmacokinetics, immunogenicity, tumor response in subjects with advanced solid tumors per RECIST (ORR)
- **Exploratory**: biomarker and receptor occupancy

VISTA-101 study design

Cleared initial monotherapy cohorts and started combination cohort with pembrolizumab

KVA12123 monotherapy safety

KVA12123 was well tolerated in 3, 10 & 30 mg monotherapy cohorts

- No dose limiting toxicities (DLT) were observed
- All KVA12123 treatment emergent adverse events (TEAE) were grades 1-2

Pharmacokinetics and VISTA receptor occupancy (RO)

VKA12123 exhibited a greater than dose-proportional pharmacokinetic profile

Biomarkers

KVA12123 demonstrated dose proportional induction of pro-inflammatory biomarkers and on-target immune cell responses involved in anti-tumor activity

- Induces pro-inflammatory myeloid derived cytokines/chemokines involved in immune cell activation and recruitment in the tumor microenvironment
- Increases anti-tumor Non-classical monocytes and NK cells in peripheral blood
- Increases helper (CD4+) and cytotoxic (CD8+) T cells in the blood

Conclusions

- VISTA is a promising innate immune drug target that is nonredundant with T cell focused therapies
- Cleared first three VKA12123 monotherapy cohorts (3, 10, 30 mg) with 11 patients dosed
- Clinical safety profile established as VKA12123 was well tolerated and no DLTs were observed
- No evidence of CRS-associated cytokines (IL-6, TNFα & IL-10) were detected
- VKA12123 exhibited a greater than dose-proportional pharmacokinetic profile
- Achieved >90% VISTA RO across patients in the 30 mg dosing cohort approaching an optimal clinical dose
- Demonstrated efficacy-related cytokine secretion of CXCL10, MCP1, MIP1α & MIP1β
- On-target changes in anti-tumor immune cell subpopulations were observed after treatment
- VISTA-101 trial is advancing to higher monotherapy dose levels and in combination with pembrolizumab
- Additional monotherapy data and combination therapy clinical data anticipated in Q2 2024

Tumor type and best overall response (BOR)

- Discrete tumor types enrolled in VISTA-101 clinical trial
- Additional monotherapy safety and efficacy data anticipated in Q2 2024

Immunophenotyping

Changes of peripheral blood immune cell subpopulations after the first administration of VKA12123. Flow cytometry data acquisition and analysis were performed using the FACSCalibur™ Flow cytometer. Data was acquired and analyzed using BD FACSDiva™ software. Fold change per dose was calculated for each subpopulation (mean ± SD).