KVA 12.1 a novel fully human anti-VISTA antibody
to treat cancer patients with advanced solid tumors

Shawn Iadonato, Yula Ovechkina, Emily Frazier, Jessica Cross, Nathan Eyde, Neda Kabi, Chen Katz, Remington Lance, Kurt Lustig, David Peckham, Shaarwar Sridhar, Carla Talbaux, Isabelle Tihista, Mei Xu and Thierry Guillaudeux
Kineta Inc. 219 Terry Av. North, Seattle, WA 98109. tguillaudeux@kineta.us

Background

- VISTA (V-domain Ig Suppressor of T cell Activation) is a unique CD28/87 family member with poorly defined receptors. However, VISTA itself, PSLG-1, VSIG3, VSIG8 and VRG1 have been suggested as putative receptors.
- VISTA is highly expressed on circulating and intratumoral myeloid cells especially MDSCs.
- VISTA is a negative regulator that directly suppresses T cell activation and proliferation.
- High VISTA expression correlates with poor survival in cancer patients.
- VISTA is a unique immune checkpoint inhibitor for tumor immunotherapy.

Objectives

- Select a lead clinical candidate against VISTA → KVA12.1
- Develop a clinical plan for patients with advanced solid tumors

Results

- Exceptional antibody diversity in both Heavy and Light Chains
 - 107 fully human Scv antibodies directed against Human VISTA were generated
 - 15 V\(\text{H}\), diversity groups
 - 15 V\(\text{L}\), diversity groups
 - Highest diversity in CDR3H

- KVA antibodies bind only to VISTA and not other B7 family proteins

Mechanism of action of our lead anti-VISTA antibody: KVA12.1

Safety: KVA12.1 is well-tolerated in NHP toxicity studies

Clinical Development Plan

Clinical Protocol Design

Phase 1/2 trial is proposed as follows:

Part A: Monotherapy

Part C: Expansion - Monotherapy

Part B: Combination Therapy

Part C: Expansion - Combination Therapy

Study Endpoints

- Clinical
 - Safety measurements and DLTs as single agent and in combination with anti-PD1
 - Overall Response Rate and durability of response using RECISTv1.1
 - Determined MTD and R2PD

- Pharmacologic and Biomarker
 - PK
 - Receptor occupancy
 - Cytokine and Chemokine profiles in plasma samples
 - Flow Cytometry for PD marker on immune cells

Conclusion

- 107 fully human Scv anti-VISTA antibodies were generated and analyzed
- KVA12.1 was selected as our clinical lead
- KVA12.1 has an extended PK and a unique epitope
- KVA12.1 induces strong anti-tumor response as a single agent or in combo-therapies with anti-PD1 in multiple tumor models
- KVA12.1 is safe and does not exhibit any sign of Cytokine Release Syndrome in NHP as well as human whole blood
- Clinical Trial will start end of 2022